| Answer | Acceptable answers | Mark | |-------------------------------|--------------------|------| | | | | | energy transferred per second | | (1) | | / | | · · | | Question | Answer | Acceptable answers | Mark | |-----------------|------------------|---|------| | Number | | | | | 1 (b)(i) | substitution (1) | | | | | 0.25 x 230 | | | | | evaluation (1) | | | | | 58 (W) | accept 57 to 58, and 60 (W) give full marks for correct | | | | | answer, no working | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---------------------------|------| | 1 (b)(ii) | A description including the following points | | | | | • (rate) of flow (1) | per second/flows/flowing | | | | • (of) charge (1) | electrons/ions/coulombs/C | | | | | IGNORE electricity/amps/A | (2) | | Question | Answer | Acceptable answers | Mark | |----------|-------------------------|--|------| | Number | | | | | 1(c)(i) | (current) it is reduced | gets smaller/ decreases/ slows
down/ drops/ lower | (1) | | Question | Answer | Acceptable answers | Mark | |----------|--|--|------| | Number | | | | | 1(c)(ii) | conversion of watts to kilowatts | This is a 'show that' so marks are only awarded if working is shown. | | | | (1) substitution (1) 0.0005 x 48 x 26 | For no conversion of power but otherwise correct, 0.5 x 48 x 26 (1) | | | | evaluation (1) | 624 (p) (1) | | | | 0.62(4)(p) | Any other power of ten error in power or cost seen in substitution | | | | Note: 0.0005 x 48 x 26 scores 2 (conversion and substitution | 1 mark maximum | | | | marks) | Answers with no working get zero marks. | (3) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 1 (c)(iii) | Any one of the following points | | | | | ideas of energy conservation (1) | wastes energy (if left on) RA (NOT wastes electricity) | | | | ideas of atmospheric polluting effects (1) | CO ₂ / SO ₂ production/global warming/acid rain/greenhouse gases | | | | ideas of possible dangers | | | | | (1) | fire hazards/overheating /safer(when off) | | | | • reduces life of parts (TV) (1) | Ignore ozone layer references | (1) | | Number | Answer | able answers | Mark | |---------|---|----------------------------------|------| | 2(a)(i) | positive / + /plus /+ve /positively (charged) | accept poor spelling of positive | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|---|------| | 2(a)(ii) | An explanation linking two from the following points | | | | | repulsion / repels (1) | independent mark | | | | • (because) same charge (1) | | | | | • (force) greater than gravity (1) | | | | | | positive charges repel each other (2) | | | | | both positive so repel(2) | | | | | positive ball attracted to negative lid (2) | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|-------------------------|------| | 2(b) | An explanation linking the following points | | | | | electrons move (1) | negative charge moves | | | | • from ground to lid (1) | to neutralise positives | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 2(c) | An explanation linking the following points • discharged /earthed so falls(1) • charged again/at plate so rises/repels (1) | pulled down by gravity reached the plate and process repeats | | | | | ignore direction of charge flow – already assessed | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--------|--------------------|------| | 2(d) | В | | (1) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 3 (ai) | Substitution (1) 1.5 x 6 Evaluation (1) 9 (W) Ignore any unit given by candidate. | Power of 10 error max 1 mark Give full marks for correct answer with no working shown | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 3 (aii) | More turns on the coil (1) | Wrap coils on iron (core/former)/
more coils/twists/loops.
Bigger coil is insufficient. | | | | More powerful/stronger
magnet(s) (1) | More magnets. Bigger/larger magnet is insufficient. Ignore increase speed of rotation | (2) | | Question | Answer | Acceptable answers | Mark | |----------|--|---|------| | Number | | | | | 3 (aiii) | A description including | | | | | in one direction only for DC (1) | 'DC goes straight' is insufficient | (2) | | | • reversing direction for AC (1) | AC switches/changes direction OR moves to and fro | | | | | 'AC goes different ways' is insufficient. | | | | | Diagram with labelled arrows could get 2 marks. | | | | | Indicative Content | | | | |--------|-------|---|--|--|--| | Number | 1 | | | | | | QWC | *3(b) | A comparison including some of the following ideas Transformers can be used or {voltages/currents} can be {changed/transformed} AC (can transmit) at lower current/high(er) voltage National Grid is (usually) over ground (DC cables (were) underground) Less energy lost in transmission National Grid system can supply to customers further away Possible to create a grid linking power stations More flexibility in voltage for consumer Consumer can draw large(r) current More flexibility in power drawn Great(er) range of devices can be powered | | | | | Level | 0 | No rewardable content | | | | | 1 | 1 - 2 | a limited (maybe implied) comparison giving one fact e.g: AC can | | | | | | | be at high(er) voltage OR the National Grid can supply houses not close to a power station/ further (away/than the New York system.) the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy | | | | | 2 | 3 - 4 | a simple comparison including two ideas which may be linked or not eg Nat. Grid can supply whole country and can be used for more appliances (than just lighting). e.g. AC can be transmitted further (than DC) (because it) wastes less energy the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy | | | | | 3 | 5 - 6 | A detailed comparison including at least three ideas, with at least one direct link between two of them. e.g. AC can be transmitted further (than DC) because AC can be transformed to {lower current/high(er) voltages}. OR AC can be transformed to {lower current/high(er) voltages}. | | | | | | | Greater range of devices used. the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--------|--------------------|------| | 4(a)(i) | С | | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--------|--------------------|------| | 4(a)(ii) | В | | (1) | | Question
Number | Answer | | | Acceptable answers | Mark | |--------------------|--|-----|-----|--|------| | 4 (b) | substitution
3.7 x 13
evaluation
48 (C) | (1) | (1) | 48.1
Correct answer with no
calculation scores 2 marks | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 4(c)(i) | Correct responses can be seen in (i) r (ii) An explanation linking | | (2) | | | • <u>electrons</u> (1) | ["positive electrons/ protons moving", seen anywhere in part (i) or (ii) loses this mark] | | | | and <u>one</u> of | ignore reference to charge before rubbing | | | | removed by friction (1)(transferred) to plastic (1) | transferred from cloth | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|-----------------------------------|---|------| | 4(c)(ii) | opposite to charge on plastic (1) | charge on cloth is positive | (2) | | | equal to charge on the plastic | same size as charge on plastic | | | | (1) | electrons transferred from the cloth equal to electrons lost by cloth | |